Greening the Black: Plants in Space Gioia Massa NASA, Kennedy Space Center, FL, USA #### My Journey ## Why grow plants in space? - Food - Psychological well being - Atmosphere - Water #### The Space Crop Production Vision ## Ensure Food System Security on Long Duration Missions Beyond LEO Near-Term Goal Nutrient Supplementation of Prepackaged Food Long-Term Goal Caloric Replacement to Facilitate Earth Independence #### Space Crop Production Candidates Salad Leafy Greens Tomato Pepper Radish Strawberry Green Onion Pea Carrot Lettuce, Chinese cabbage, Swiss chard, Mizuna, Spinach Herbs Basil Mint Chives Dill **Staple Crops**White Potato Sweet Potato MINIMAL PREPARATION / COOKING SIGNIFICANT PREPARATION / COOKING CONSUMED FRESH WITHOUT PROCESSING #### Space Crop Production Challenges #### **Deep Space** - Microgravity - Fluid movement - No convection - Water Surface Recycling - Radiation Dust - Pressure Partial gravity - Micrometeorites - Plant Size - High CO₂ - Food Safety & Microbiome - Nutrient output - Sustainability - Abiotic stresses - Vehicle resources - Crew time - Waste - Productivity - Stress tolerance - Environmental optimization - Crop scheduling Crop #### Space Crop Production Roadmap For Exploration Proving Ground to study the effect of deep space radiation on pick and eat crops in μq Operational µg Food Production capability for pick and eat crops to supplement crew diet MARS TRANSIT (Crop Production) Scale: One to Two EXPRESS Racks (8-16 Lockers) SS (Plant Research and H/W Technology) Identify challenges and solutions for growing pick and eat crops in µg to support crew nutrition Scale: Single Locker to EXPRESS Rack (8 Lockers) Notional Commercial Develop and deploy operational partial gravity systems for both nutritional support and caloric replacement as both a source of food for long duration lunar missions and as a demonstration for Mars Scale: Single Locker to Module #### MARTIAN SURFACE (Production) Environment 1g Gravity Leverage Lunar Surface experience in Food Production systems to extend Earth *Independence for Mars missions* Scale: Single Locker to Module #### Ground (Plant Research and H/W Technology) Develop space crop production concepts and strategies in support of destinations along the exploration roadmap Scale: Single Locker to Module #### Current NASA Large Plant Research Capabilities On ### VEG-01B Harvest (August 2015) #### Astronaut Comments #### Scott Kelly - the logistical complexity of having people live and work in space for long periods - the supply chain that is required - For Mars, need a space craft that is more selfsustainable with regards to its food supply #### Kjell Lindgren - benefit of eating the fresh food - contribution that plants have to the ISS ecosystem - psychological benefit it's really fun to see green growing things in the sterile environment of the ISS ## Red Lettuce Cut-and-Come-Again #### VEG-03 New Crops on Orbit - Red Russian Kale - *Dragoon Lettuce - Wasabi Mustard - *Extra Dwarf Pak Choy - Amara Mustard Grown in different combinations with Amara Mustard and Extra Dwarf Pak Choi harvested recently on ISS! *= Student Selected Crops! VEG-04 Research to study the impacts of Red: Blue: Green light ratios on Mizuna crop growth, nutrient composition, organoleptic appeal and microbial food safety with additional assessments of crew behavioral health. Collaboration between KSC, JSC, Purdue University and SNC-ORBITEC ## VEG-04 Crew Engagement #### Plant Aromas Also Enhance Astronaut Experiences ## Thank you!